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Basic Project Directory Structure: (Only RTL and Simulation folders are used) 

 

Once you’ve installed the tools, make sure Docker is running before running “run.sh”. 

** NOTE: Anything created outside the “workspace” directory will be deleted and unrecoverable 

after exiting the container. Only folders and files created within the “workspace” directory will 

available after exiting the container.  
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  Basic Flow Steps: 

Creating a Project: 

1. Navigate to the asic-tools directory and run the startup script 

user@host:~$ cd path/to/asic-tools && ./run.sh  

 

**NOTE: you’ll know you’re in the container when the name changes from your                   

user@host to ubuntu@asic (or root@asic depending on sudo usage) 

 

2. Create a project directory or clone your repository  

ubuntu@asic:~/workspace$ mkdir <project_name>\ 

    or 

ubuntu@asic:~workspace$ git clone git@github.com:you/your_proj.git 

 

 

3. Copy or add the Makefile to your project home (Latest Makefile) 

 

4. Create an rtl folder and a sim folder 

 

~/workspace/project_home$ mkdir rtl sim 

 
 

Designing and Testing RTL: 

1. Write an HDL module 

 

**NOTE: Use Verilog or SystemVerilog, just be sure to place design files in your projects 

rtl/ directory. The Makefile looks for design HDL files here. 

 

~/workspace/project_home$ touch rtl/design.sv 
 

2. Once your module is written, use the make or CLI to lint 

- CLI:       verilator --lint-only --timing <your_verilog_file.sv> 

https://github.com/ryancramuh/EEL/blob/main/Makefile


- Make:        make lint 

 

 
~/workspace/project_home$ make lint 
 
You will see: 

 

----- Linting All Modules ----- 
Linting rtl/design.sv . . . PASSED 
   

-or- 

 
----- Linting All Modules ----- 
Linting rtl/top/EEL_no_haz.sv . . . FAILED 
%Error: <sometimes helpful error message> 
 
- If output is green and says PASSED: design.sv, you’ve passed lint 
- If output is red and says FAILED: design.sv, you’ve failed lint 
 

3. Write a testbench  

- Make a sub-directory in sim/ with your design file name and the prefix “tb_” 

~/workspace/project_home$ mkdir sim/tb_design 

- Create and write your testbench file with the same name formatting 

(SystemVerilog recommended) 

~/workspace/project_home$ touch sim/tb_design/tb_design.sv 

 

**NOTE: Please be sure to include the following or else you won’t be able to view your results: 

initial begin 

 $dumpfile(“tb_design.vcd”);  

 $dumpvars(0, tb_design); 

end 

 

Use SystemVerilog and Verilog Language Features: 

Assertions: similar to C, use assertions when you expect specific values 

assert (condition) else $error(“error messages: %d equals %d”, A, B) 



Task: a function that can drive inputs and have delays 

- Define within the scope of the module, so it can drive signals 

Function: to compute values or generic programming 

For Loop: compare functions and task outputs using assert (test many inputs) 

 

Simulate with Verilator:  

Verilator is a two state simulator. It will only show signals as being a 0 or 1.  

CLI:      $ verilator --timing --trace --binary sim/<testname>/<testname>.sv -I"rtl" 

  $ ./obj_dir/V<testname> 

- if you type ./obj_dir/ and hit tab, it should autocomplete) 

- Running the binary should create a waveform dump file (.vcd) 

 

**NOTE:  

--timing lets us simulate # delays  

--binary makes a runnable test file 

--trace tells Verilator to save simulation results to a waveform 

-I”rtl” tells Verilator to include the rtl/ directory when looking for RTL files 

 

Make:    $ make sim 

- automatically runs all tests inside the sim folder 

o every tb_<design_file_name> folder is its own test   

- automatically generates your tests .vcd waveform dump file 

- tests can be specified with make sim/<testname> 

To view the waveform: 

o install surfer or gtkwave and use: 

▪ surfer <name>.vcd 
▪ gtkwave <name>.vcd 

Simulate with Icarus Verilog:  

Manual:  $ iverilog -g2012 rtl/<rtl_name>.sv sim/<test_dir>/<test_name>.sv 

   $ ./a.out 

 **NOTE: -g2012 enables SystemVerilog and not just Verilog , per the IEEE 2012 spec 



Make:      make isim 

- Automatically runs all tests inside sim/ 

- to run a specific test use: make isim/<design_name> 

- Leaves a .vcd and a results.txt log file in the directory of the test 

To view the waveform: 

o install surfer or gtkwave and use: 

▪ surfer <name>.vcd 
▪ gtkwave <name>.vcd 

 

Sources 

Cal-Poly-Open-Source-ASIC-Class. Open-Source ASIC Class, GitHub.  

https://github.com/Cal-Poly-Open-Source-ASIC-Class/ 

https://github.com/Cal-Poly-Open-Source-ASIC-Class/

